Predictions of steady state and transient landscape morphology using sediment-flux-dependent river incision models

نویسندگان

  • N. M. Gasparini
  • K. X. Whipple
  • R. L. Bras
چکیده

[1] Recent experimental and theoretical studies support the notion that bed load in mountain rivers can both enhance incision rates through wear and inhibit incision rates by covering the bed. These effects may play an important role in landscape evolution and, in particular, the response of river channels to tectonic or climatic perturbation. We use the channel-hillslope integrated landscape development (CHILD) numerical model with two different bedrock incision models that include the dual role of the sediment flux to explore the transient behavior of fluvial landscapes. Both models predict that steady state channel slopes increase in landscapes with higher rock uplift rates. However, the incision models predict different transient responses to an increase in uplift rate, and the behavior of each incision model depends on both the magnitude of change in uplift rate and the local drainage area. In some cases, the transient channel behavior is indistinguishable from that predicted for transport-limited alluvial rivers. In other cases, knickpoints form in some or all of the drainage network, as predicted by the detachmentlimited stream power model. In all cases the response in the lower parts of the network is highly dependent on the response in the upper parts of the network as well as the hillslopes. As the upper parts of the network send more sediment downstream, channel incision rates may rise or fall, and slopes in the lower parts of the channel may, in fact, decrease at times during the transient adjustment to an increase in rock uplift rate. In some cases, channel incision in the upper parts of the network ceases during the transient while the hillslopes adjust to the new uplift rate; drainage density may also change as a function of uplift rate. Our results suggest that if the sediment flux strongly controls bedrock incision rates, then (1) the transient fluvial response will take longer than predicted by the detachment-limited stream power model, (2) changes in channel slope may be much more complex than predicted by the detachment-limited stream power model, and (3) changes in the fluvial system will be closely tied to sediment delivery from the hillslopes. Importantly, our results outline quantitative differences in system behavior produced by competing models and provide a framework for identifying locations in natural systems where differences in channel morphology can be used to discern between competing fluvial erosion models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implications of sediment-flux-dependent river incision models for landscape evolution

[1] Developing a quantitative understanding of the factors that control the rate of river incision into bedrock is critical to studies of landscape evolution and the linkages between climate, erosion, and tectonics. Current models of long-term river network incision differ significantly in their treatment of the role of sediment flux. We analyze the implications of various sediment-fluxdependen...

متن کامل

Influence of lithology on hillslope morphology and response to tectonic forcing in the northern Sierra Nevada of California

[1] Many geomorphic studies assume that bedrock geology is not a first-order control on landscape form in order to isolate drivers of geomorphic change (e.g., climate or tectonics). Yet underlying geology may influence the efficacy of soil production and sediment transport on hillslopes. We performed quantitative analysis of LiDAR digital terrain models to examine the topographic form of hillsl...

متن کامل

A generalized power law approximation for fluvial incision of bedrock channels

[1] Sediment flux is known to influence bedrock incision rates in mountain rivers. Although the widely used stream power incision model lacks any explicit representation of sediment flux, the model appears to work in a variety of real settings. We address this apparent contradiction using numerical experiments to explore the morphology of fluvial landscapes evolved with four different incision ...

متن کامل

Formation of Fluvial Hanging Valleys: Theory and Simulation

Although only recently recognized, hanging tributary valleys in non-glacial landscapes are not uncommon in tectonically active regions. Standard river incision models do not allow for the formation of fluvial hanging valleys; these disequilibrium landforms present an opportunity to advance our understanding of river incision processes. In this work, we demonstrate that thresholds apparent in se...

متن کامل

Landscape disequilibrium on 1000–10,000 year scales Marsyandi River, Nepal, central Himalaya

In an actively deforming orogen, maintenance of a topographic steady state requires that hillslope erosion, river incision, and rock uplift rates are balanced over timescales of 10–10 years. Over shorter times, < 10 years, hillslope erosion and bedrock river incision rates fluctuate with changes in climate. On 10-year timescales, the Marsyandi River in the central Nepal Himalaya has oscillated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007